

Evolution of Earth Observation With TDI Sensors

David Barry NCEO Annual Conference 2nd – 5th September 2019

Earth Observation

Applications

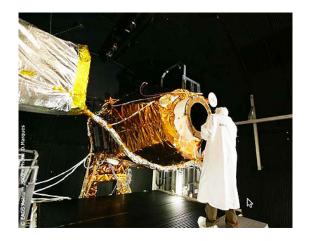
+ Earth Observation Programmes have application in a number of fields, including:

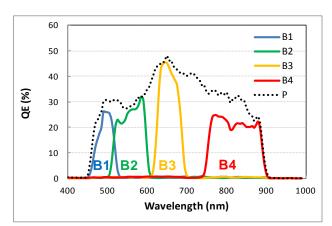
- Weather
- Climate Change
- Security/Defence
- Mapping
- Disaster monitoring

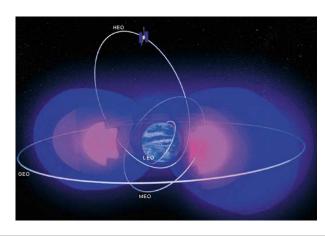
Earth Observation

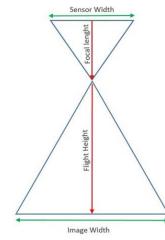
System and Sensor Requirements

+ Cost

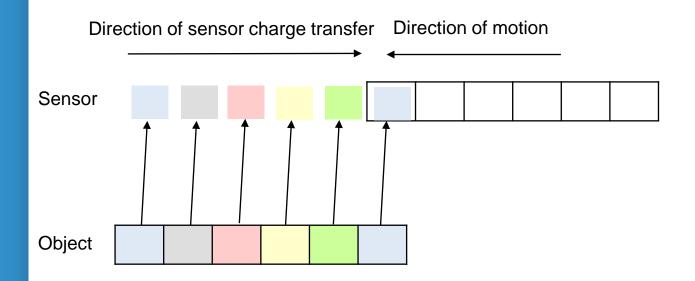

- + Reduced Weight + Increased Integration.
- + Constellations \rightarrow Greater Revisit Time
- + LEO → Reduced Focal Length


+ Spatial Resolution


- + Small Pixels \rightarrow High GSD
- + High Data Rates → High Swath Widths


+ Spectral Resolution

- + Well Defined Channels
- + Optimised Modulation Transfer Function (MTF)
- + Optimised Quantum Efficiency (QE)
- + Strong Out-of-band Rejection
- + Radiation Hardness
- + Small Interaction Cross Sections
- + Shielding
- + Optimised Operational Modes



Time, Delay and Integration

Principles

 Time Delay and Integration (TDI) sensors combine integration with charge transfer such that integration occurs as charge is being transferred.

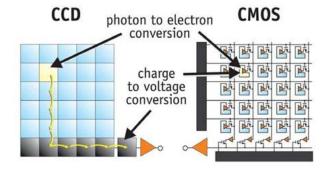
- Charge transfer speed is synchronised with the relative speed between satellite and object of interest.
- Repeated exposure of a scene from pixel to pixel effectively increases optical gain.
- Since charge is summed in the transfer process, SNR improves with number of transfers.
- Integration times on the scale of sensor readout rates make for improved resolution of moving targets compared with staring mode operation

Sensor Technology

TDI CCDs

- + Charge Coupled Devices inherently support TDI mode of operation through their characteristic charge transfer process.
- + In Low Earth Orbit (LEO), the relative motion between satellite and target is extremely fast. TDI becomes crucial to maintain resolution over staring mode.
- + E.g. Pleiades (e2v) and GeoEye (ITT), both of which boast ~0.3m GSD.
 - ✓ Inherent Charge Transfer Capability
 - ✓ Low Noise
 - □ Speed Limited to read out rate
 - □ Typically Larger Pixels than CMOS
 - Off Chip Video Chain and Clock Generation Electronics
 - □ High Power Consumption
 - □ The Above contribute to High Cost

VHR Satellite Comparison

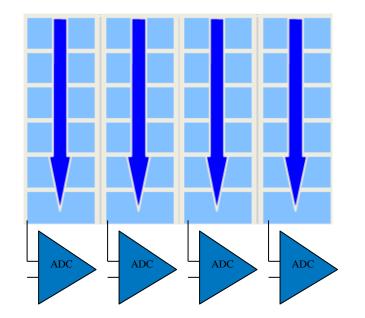

		KompSAT-3A	Pleiades-1A/B	GEOEye-1	WorldView-1
Launch		2015	2011 & 2012	2008	2007
Orbit Height	km	528	695	681	496
Focal Length	m	9	13	13	9
F#		10.75	19.85	12.09	14.67
Pixel Pitch	um	9	13	8	8
Imager Mass	kg	300	200	450	400
Satellite Mass	kg	1100	1015	1955	2500
GSD	m	0.54	0.70	0.41	0.45
GRD	m	0.54	0.85	0.36	0.68
Mission Cost		\$250M	\$425M	\$450M	\$500M

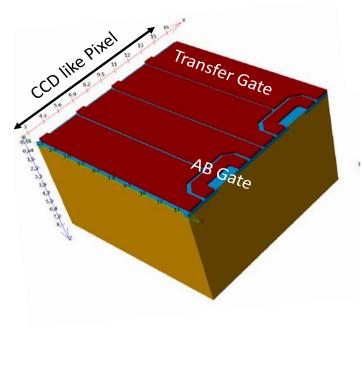
Sensor Technology

TELEDYNE C2V Everywhereyoulook™

TDI CMOS

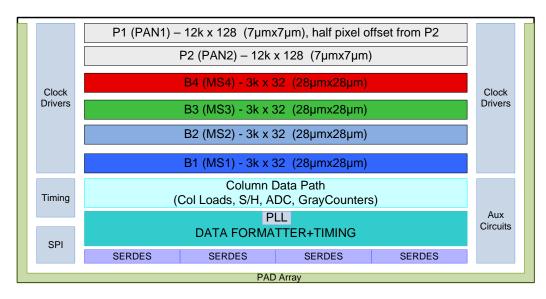
- + Minimum possible pixel size capability in CMOS is significantly smaller than for CCDs:
- + Allows for improved resolution for the same sized telescope \rightarrow Performance Driver:
- + Or, a smaller sized telescope for the same resolution \rightarrow Cost Driver
- + CMOS allows for much higher data rates:
- + Each pixel has it's own readout \rightarrow massively parallel read-out compared with CCD
- + Approx. 0.15Gbit/s for CCD compared with 60Gbit/s for TDI CMOS
- + Permits higher swath widths without compromising on satellite speed \rightarrow Higher resolution
- + On chip functionality Video chain and bias control.
- + Lower power consumption
- + Lower voltage requirements reducing the need for high capacity power supplies \rightarrow reduced mass


But charge transfer is not inherent to CMOS devices as it is for CCDs.


Sensor Technology

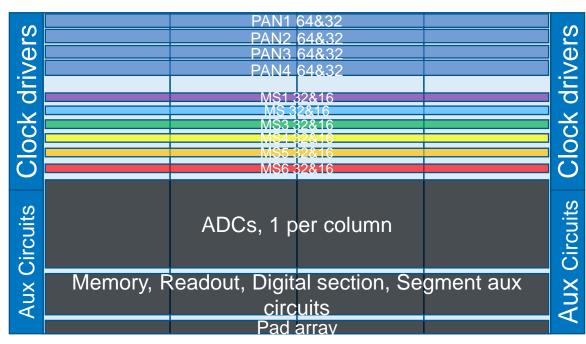
Optimising TDI CMOS

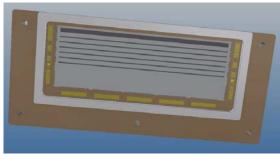
- + One option used is to sum in the digital domain of a staring image (Digital TDI)
- + Using traditional CMOS architecture, Improvements still to be made around noise, power consumption, memory requirements and MTF.
- + Combining the benefits of CCD and CMOS is a CCD-on-CMOS approach (charge domain CMOS TDI)
- Noiseless charge transfer across CCD-like pixel structure produced on a CMOS process
 - Reduced power consumption
 - Increased radiation hardness
 - Very high data rates
 - High spatial resolution
 - On-Chip Functionality



Teledyne Multispectral qTDI CMOS

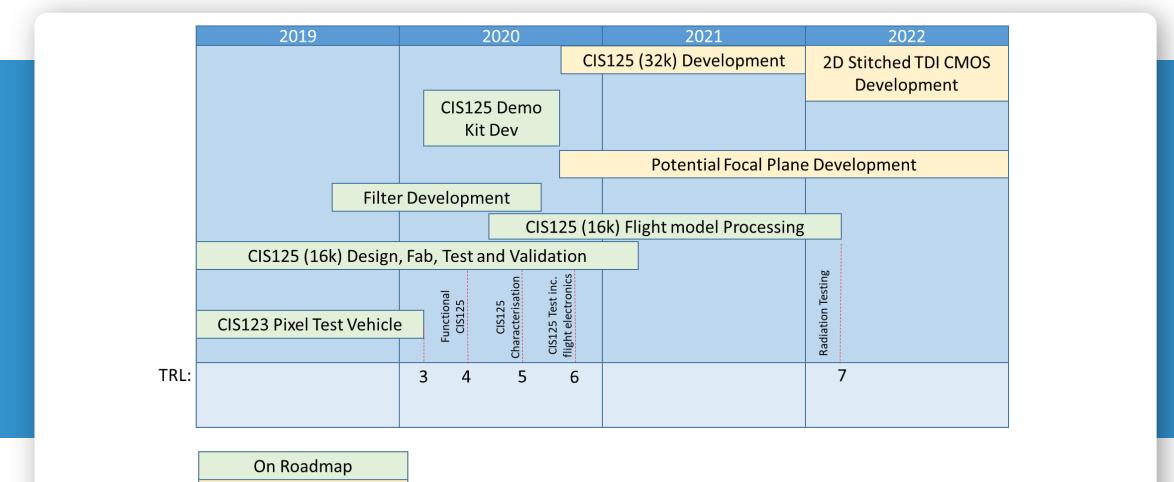
IC-47 (FSI) and IC-49 (BSI)


PAN Channels	2 (half pixel offset)
MS Channels	4
Pixel pitch	7μm PAN, 28μm MS
Number of pixels	PAN: 12k columns MS: 3k columns
GSD at max line rate (cm)	11
Swath width at line rate ~10KHz (km)	4.2



Teledyne Multispectral qTDI CMOS

CIS125 – In Development


Pan Channels	4			
MS Channels	6			
Pixel pitch µm	5µm PAN, 10µm MS			
Number of pixels	PAN: 16k columns MS: 8k columns			
GSD at max line rate (cm) ^[1]	7			
Swath width at line rate ~10KHz (km)	11			
[1]Customination required to use 2 x DAN only				

^[1]Customisation required to use 2 x PAN only

CIS125 Roadmap

Potential Roadmap

Thank you